Gujarati
Hindi
7.Gravitation
medium

The time period of an artificial satellite in a circular orbit of radius $R$ is $2\, days$ and its  orbital velocity is $v_0$. If time period of another satellite in a circular orbit is $16 \,days$ then

A

its radius of orbit is $4\,R$ and orbital velocity is $v_0$

B

its radius of orbit is $4\,R$ and orbital velocity is $\frac{v_0}{2}$

C

its radius of orbit is $2\,R$ and orbital velocity is $v_0$

D

its radius of orbit is $2\,R$ and orbital velocity is  $\frac{v_0}{2}$

Solution

Using Kepler's law $:$ $\mathrm{T}^{2} \propto \mathrm{R}^{3}$

$\Rightarrow \frac{\mathrm{T}_{1}^{2}}{\mathrm{T}_{2}^{2}}=\frac{\mathrm{R}_{1}^{3}}{\mathrm{R}_{2}^{3}} \Rightarrow \frac{4}{16 \times 16}=\frac{\mathrm{R}^{3}}{\mathrm{R}_{2}^{3}}$

$\Rightarrow \mathrm{R}_{2}=4 \mathrm{R}$

$\frac{\mathrm{V}_{1}}{\mathrm{V}_{2}}=\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)^{1 / 2} \Rightarrow \mathrm{V}_{2}=\mathrm{V}_{1}\left[\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right]^{1 / 2}$

$\mathrm{V}_{0}=\left[\frac{\mathrm{R}_{1}}{4 \mathrm{R}}\right]^{1 / 2}$

$\mathrm{V}_{2}=\frac{\mathrm{V}_{0}}{2}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.