- Home
- Standard 11
- Physics
The time period of an artificial satellite in a circular orbit of radius $R$ is $2\, days$ and its orbital velocity is $v_0$. If time period of another satellite in a circular orbit is $16 \,days$ then
its radius of orbit is $4\,R$ and orbital velocity is $v_0$
its radius of orbit is $4\,R$ and orbital velocity is $\frac{v_0}{2}$
its radius of orbit is $2\,R$ and orbital velocity is $v_0$
its radius of orbit is $2\,R$ and orbital velocity is $\frac{v_0}{2}$
Solution
Using Kepler's law $:$ $\mathrm{T}^{2} \propto \mathrm{R}^{3}$
$\Rightarrow \frac{\mathrm{T}_{1}^{2}}{\mathrm{T}_{2}^{2}}=\frac{\mathrm{R}_{1}^{3}}{\mathrm{R}_{2}^{3}} \Rightarrow \frac{4}{16 \times 16}=\frac{\mathrm{R}^{3}}{\mathrm{R}_{2}^{3}}$
$\Rightarrow \mathrm{R}_{2}=4 \mathrm{R}$
$\frac{\mathrm{V}_{1}}{\mathrm{V}_{2}}=\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)^{1 / 2} \Rightarrow \mathrm{V}_{2}=\mathrm{V}_{1}\left[\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right]^{1 / 2}$
$\mathrm{V}_{0}=\left[\frac{\mathrm{R}_{1}}{4 \mathrm{R}}\right]^{1 / 2}$
$\mathrm{V}_{2}=\frac{\mathrm{V}_{0}}{2}$